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Abstract

Annotation of foot-contact and foot-off events is the initial step in post-processing for most

quantitative gait analysis workflows. If clean force plate strikes are present, the events can

be automatically detected. Otherwise, annotation of gait events is performed manually,

since reliable automatic tools are not available. Automatic annotation methods have been

proposed for normal gait, but are usually based on heuristics of the coordinates and veloci-

ties of motion capture markers placed on the feet. These heuristics do not generalize to

pathological gait due to greater variability in kinematics and anatomy of patients, as well as

the presence of assistive devices. In this paper, we use a data-driven approach to predict

foot-contact and foot-off events from kinematic and marker time series in children with nor-

mal and pathological gait. Through analysis of 9092 gait cycle measurements we build a

predictive model using Long Short-Term Memory (LSTM) artificial neural networks. The

best-performing model identifies foot-contact and foot-off events with an average error of 10

and 13 milliseconds respectively, outperforming popular heuristic-based approaches. We

conclude that the accuracy of our approach is sufficient for most clinical and research appli-

cations in the pediatric population. Moreover, the LSTM architecture enables real-time pre-

dictions, enabling applications for real-time control of active assistive devices, orthoses,

or prostheses. We provide the model, usage examples, and the training code in an open-

source package.

1 Introduction

One of the key elements in analysis of gait is the quantitative assessment of gait parameters col-

lected in a reproducible setting. Modern gait laboratories are equipped with motion capture

systems that allow experimenters to track trajectories of markers positioned on a subject’s

body. After collecting such data, experimenters fit a musculoskeletal model with associated

markers and reconstruct body movement. This procedure allows computation of joint angles

over time using inverse kinematics. These data are used in a variety of applications, ranging
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from basic scientific studies about the nature of human movement to clinical assessments used

for planning treatments and assessing outcomes.

To make quantitative comparisons, it is conventional to align gait data to predefined land-

marks in the gait cycle. These landmarks allow segmentation of the time series into compara-

ble gait cycles and sub-cycles. The standard and well-established parameters of alignment are

the foot-contact event (the instant in time when the foot contacts the floor) and the foot-off

event (the instant in time when the foot leaves the floor). Whenever the gait data include

unambiguous measurement of ground reaction forces, these events can be automatically

defined. However, clean force plate data is often missing, especially when individuals with

orthopaedic or neurological impairments are being tested [1, 2].

Lacking ground reaction forces, detection can be done automatically in the case of normal

gait using basic functions of the markers, such as the velocity of the heel marker or the distance

between the heel and the pelvis [3]. In practice, most of the methods have been only validated

for normal gait and automatic detection in clinics is uncommon.

In pathological gait, signals from force plates can be corrupted due to partial contact of the

foot with the force plate, the presence of the contralateral foot on the force plate, short step

length or foot drop, or the presence of assistive devices, such as walkers. For example, vertical

acceleration has been shown to be an inappropriate indicator of events in toe walking [4].

Moreover, not all clinics are equipped with force plates, and pathological kinematics, especially

of the foot and ankle, introduce significant problems for automatic techniques. Consequently,

researchers have sought alternatives to force-plate data using inertial measurement units [5–

7], and have developed event detection algorithms appropriate for these systems [8–13]. These

solutions require additional hardware, extra time for placing the hardware on the subject, and

additional analysis.

In practice, events in the pathological gait are annotated manually from the kinematic data

collected with a motion capture systems. This motivates the search for algorithms automating

the time-consuming annotation. Most available algorithms have a similar structure (Fig 1),

and can be divided into three categories: Coordinate-based, Velocity-based, and Probabalistic.
Coordinate-based methods [14, 15] exploit distances between body parts. Velocity-based

Fig 1. Most of the available algorithms can be decomposed into two steps. In the first step, a multivariate time series of the

kinematics and marker trajectories (left plot, with only three variables displayed) is mapped to a univariate time series (middle plot)

with some function f. In the second step a peak detection algorithm g is applied to convert univariate time series into a binary time

series (0 when no event and 1 otherwise).

https://doi.org/10.1371/journal.pone.0211466.g001
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methods [9, 14, 16–20] use velocities of markers. Probabilistic methods [21–23] use parametric

probabilistic models with manual or data-driven parameter tuning. These algorithms are not

widely adopted, rely on heuristics designed for normal or treadmill gait, and commonly fail in

the situations encountered in clinics.

In this paper we describe an event detection algorithm that does not require force plates

and is applicable to a wide range of pathological gait patterns. The algorithm combines ele-

ments of coordinate-based, velocity-based, and probabilistic approaches through a data-driven

model. We create a time series model, using coordinate- and velocity-based features to predict

the likelihood of an event in a series of frames. To that end, we use a dataset of over 9092

motion capture trials of the gait of children seen in the Center for Gait and Motion Analysis at

Gillette Children’s Specialty Healthcare.

There are potential clinical, research related, and economic benefits of automatic gait event

detection. From the economic perspective, methods of event detection which only use marker

trajectories can reduce the cost of human annotator or additional hardware such as accelerom-

eter or force plates. From the clinical perspective, automatic annotation provides more consis-

tent data and reduces the variance of individual annotators as well as between annotators.

From the research perspective, the ability to accurately and efficiently extract multiple gait

cycles from a trial reduces the time for annotation and allows the identification of more gait

cycles, generating more data for further analysis.

We are releasing the model in order to stimulate further research and enable practical use.

The ready-to-use software is published as a GitHub repository (https://github.com/kidzik/

event-detector).

2 Methods

2.1 Data

The participants comprising the dataset were patients visiting Gillette Children’s Specialty

Healthcare Center for Gait and Motion Analysis between 1994 and 2017. The participants

ranged in age from 4 to 19 years. The dataset contains 18153 trials and 9092 of them have

annotated gait events (see Table 1 for details). The patient population is comprised of 73%

individuals with a diagnosis of cerebral palsy. The remaining 27% are a mix of neurological

(e.g. myelomeningocele), orthopaedic (e.g. patellofemoral syndrome), developmental (e.g. idi-

opathic toe walking and idiopathic torsion), and genetic disorders.

Patients were asked to walk X approximately 15 meters. Each leg is treated separately, yield-

ing 18184 observations with annotations. For every observation the available data consists of

trajectories of markers placed on the foot, shank, thigh, and pelvis and rotations of the pelvis,

hip, knee, ankle and foot, expressed as Euler angles computed using the plug-in-gait bio-

mechanical model [24, 25]. We refer to these sequences as kinematic time series.
Estimation of the joint angles was performed by tracking the markers attached to body,

defining segmental coordinate systems, and computing rotations between segments. Data was

collected at 120Hz with a VICON system.

Table 1. Distributions of features of patients in the dataset.

training set test set

age (years) 11.4 (sd = 6.2) 11.0 (sd = 4.5)

weight (kg) 35.7 (sd = 17.7) 35.9 (sd = 16.7)

height (cm) 135.7 (sd = 21.6) 135.6 (sd = 21.4)

leg length (cm) 70.3 (sd = 14.0) 70.6 (sd = 12.8)

walking speed (m/s) 0.84 (sd = 0.28) 0.85 (sd = 0.29)

https://doi.org/10.1371/journal.pone.0211466.t001
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During each patient’s visit, multiple trials were collected. The trials were processed for clini-

cal use by trained technicians. In general, a single stride was identified from each trial, delin-

eated by foot-contact and foot-off events for both legs.

The study was approved by the University of Minnesota Institutional Review Board (IRB)

and it was granted a waiver. Patients, and guardians, where appropriate, gave informed written

consent at the clinical visit for their data to be included. In accordance with IRB guidelines, all

patient data was deidentified prior to any analysis.

2.2 Data considerations

We designed the algorithm taking into account potential variability in the motion capture pro-

tocols. We assume that most of the clinics have a kinematic model producing similar output

for joint angles, so we use many of these signals, but we reduce the set of marker trajectory sig-

nals to only a few of the most commonly used markers.

Although the input data is close to data used in existing algorithms the advantage of our

approach comes from the data-driven nature of the algorithm; instead of deriving heuristics

related to particular markers or joint angles, we build a statistical model that finds a relation

between gait events and multivariate time series of marker and kinematic data.

2.3 Data preprocessing

For each leg r 2 {left, right} we track observations of five bodies: hip, knee, ankle, toes, and pel-

vis. In each frame positions of hip, knee, ankle, and toes are stored relative to the pelvis in the

same frame. Positions of the pelvis are stored relative to the pelvis in the first frame. In each

trial we sample nr vectors composed of: 3-dimensional position of each body, 3-dimensional

velocities, and 3-dimensional acceleration of the pelvis. Input observations are stored as matri-

ces Xr 2 R
nr�33

.

We annotate foot-contact and foot-off events and we treat these manual annotations as

the ground truth. For clarity, here we focus on the foot-contact event, the analysis of foot-

off event is analogous. For each frame we encode a gait event as 1 and a non-event as 0.

As a result, each trial consisting of nr frames is encoded as a vector of nr binary values, i.e.

Yr 2 f0; 1g
nr . Our task can now be defined as a prediction of Yr vector from the observed Xr.

Formally we are looking for a mapping function f such that Ŷ r ¼ f ðXrÞ, and we want to opti-

mize the mapping to have the prediction Ŷ r;t as close as possible to the observe data Yr,t for

t 2 {1, . . ., Tr}.

2.4 Sequence to sequence mapping

We use the framework of sequence to sequence mapping [26]. In this framework, we are find-

ing a function between one time series and another as represented by function f in Fig 1. To

approximate the function we use a Long Short-Term Memory Network (LSTM) [27] due to

its high flexibility. Thanks to the large size of our dataset, we can train this complex network

architecture efficiently.

We build predictive models for foot-contact and foot-off events separately. Events in the

output signal occur sparsely. That is, in Yr, the occurrence of a 1 (gait event) is rare compared

to the occurrence of a 0 (non-event portion of the gait cycle). For this reason we need to bal-

ance the data or choose an objective function which accounts for the sample imbalance. Fol-

lowing machine learning literature [28], we choose to use a weighted binary cross-entropy,
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penalizing a misclassified 1 with 100: 1 proportion,

HðYr; ŶrÞ ¼ �
X

1�t�Tr

100 � Yr;t log Ŷ r;t þ ð1 � Yr;tÞ log ð1 � Ŷ r;tÞ; ð1Þ

where Yr stands for the observed data and Ŷ r is the model prediction.

If we find f minimizing H(Yr, f(Xr)), real-valued process f(Xr) can be interpreted as the like-

lihood of an event. Peaks of sufficient magnitude in this process will correspond to predicted

events.

For training the network we use sequences of fixed length q = 128 frames. Let n0 be an

event in Yr. We use sequences [n0 − Z, n0 − Z + q − 1] where Z is a random integer sampled

uniformly from {1, 2, . . ., q/2}. We apply this random shift Z in order to simulate starting from

different points—to make the procedure more robust to various setups.

2.5 Evaluation framework

We use cross-entropy as a differentiable function that helps to identify the regions of interest.

However, the practical usefulness of the method is better measured by an average number of

frames between predicted annotations and the true annotations. Let Er be the set of events and

Êr the predicted set of events. Let S be a set of trials from the test set T on which numbers of

predicted and the true annotations are equal.

1. coverage = |S|/|T|,

2. time = average time (measured by the number of frames) between true and predicted

annotations on S, i.e. the minimum average absolute difference between pairs of values

from Er and Êr.

Neither of these measures are smooth, so we cannot use them directly in the training. How-

ever, note that if we optimize the Eq (1) to 0, then our estimated Ŷ r;t matches exactly the true

Yr,t and therefore both coverage and time are also optimized.

2.6 Network architecture

Our pipeline can be described in the framework we presented earlier (Fig 1). First, we con-

struct a neural network for approximating likelihood of an event. Second, we apply a peak

detection algorithm for identifying the actual events.

After a preliminary assessment of various parameter constellations, we test the following

architectures of the network (Fig 2):

• d = 33 dimensional time series input (as described in Section 2.3),

• (k − 1) LSTM layers mapping the input to a p-dimensional time series,

• LSTM layer mapping the previous layer to a 2-dimensional time series,

where k 2 {1, 2, 3} and p 2 {16, 32, 64}.

We split our dataset into training (81%), validation (9%), and test (10%) sets. The validation

set was selected randomly in each experiment. In the training phase we use cross-validation to

choose the best combination of parameters (k, p) and the right set of features, where the best

combination is chosen by comparing the predictions on the validation set. Once we establish

the best combination, we retrain the network on the training and validation sets together and

then compare our method with the two other algorithms using the test set. Due to the high

correlation of within-subject trials, we split the dataset on the patient level.

Automatic real-time gait event detection in children using deep neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0211466 January 31, 2019 5 / 11

https://doi.org/10.1371/journal.pone.0211466


Fig 2. We approximate the mapping from the multivariate time series of kinematics and marker trajectories (top plot with only

3-dimensional time series for illustration) to the likelihood of an event (bottom plot) as a multi-layer neural network with

LSTM layers (middle part of the figure). Each cell takes as input values from the previous time-step in the same level cell, and

values from the current time-step in the higher level cell. Red dashed vertical lines represent the true event, and are used for training.

Note that all LSTM cells Li in every horizontal level are the same. Parameter d corresponds to the output dimension of each cell and p
to the size of the hidden layer.

https://doi.org/10.1371/journal.pone.0211466.g002
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2.7 Peak detection

We use an elementary peak detection algorithm, which defines a local maximum as a maxi-

mum point between two local minima [29]. More precisely let X(t) be a time series where

t 2 O = {1, 2, 3, . . ., T}, for some T. Let δ> 0 be some threshold for discriminating peaks.

We call a point t0 a local maximum if and only if there exist points tl 2 O and tg 2 O such that:

(i) X(tl) + δ< X(t0), (ii) X(tr) + δ< X(t0), and (iii) X(t0) is the maximimum point on the inter-

val [tl, tr]. We define local minima analogically.

Points following the above definition can be found using an algorithm linear in time (O(n)),
which scans through all the points one by one. For details on implementation and properties

of this approach please refer to [30].

For our analysis, we normalize the outputs to [0, 1] interval and choose δ = 0.5. Our prelim-

inary analysis indicated that the threshold delta has little effect on the results.

3 Experiments

3.1 Existing methods

We compare our method with two methods introduced in [14], coordinate-based and veloc-

ity-based algorithms. The coordinate-based method leverages the fact that at the foot-contact

event, the distance in anterior-posterior direction between the heel and sacrum is maximized,

whereas in the foot-off event the distance in anterior-posterior direction between the toe and

the sacrum is minimized.

The velocity-based method uses the observation that at the foot-contact event the anterior-

posterior component of the velocity of the heel marker changes from anterior to posterior.

Similarly, the anterior-posterior component of the toe marker velocity changes from posterior

to anterior at the foot-off event.

To ensure fair comparison between benchmark methods and our approach we attempted

to maximize the performance of the benchmark. To this end, we used the following to tech-

niques. First, in the peak detection algorithm described in Section 2.7 we tried different param-

eters δ. Second, we shifted all predictions by k number of frames ahead. Our analysis showed

no sensitivity to parameter δ, while parameter k = 3 improves prediction in both algorithms.

We used δ = 0.5 and k = 3 for the analysis.

While multiple other peak detection algorithms are available, none are commonly used in

pathological gait. Comparison in [31] suggests that there is no clearly superior algorithm, and

available algorithms yield comparable results.

4 Results

Our comparisons show a substantial advantage of our method over the two selected heuristic-

based algorithms. Both coordinate-based and velocity-based methods fail to detect any events

in between 7% and 16% of cases. In contrast, our algorithm fails to detect foot contact in less

than 1% cases and foot-off in less than 5% cases. Manual investigation of these cases did not

reveal any clear pattern distinguishing these cases.

Regarding the error in the cases where events were identified, our algorithm predicts

the foot-contact within average 1.2 frames (*10.0 ms) of the human expert identification

(Table 2). This is a substantial improvement compared to 2.5 frames (*20.8 ms) for the veloc-

ity-based algorithm, and 2.2 frames (*18.3 ms) for the coordinate-based algorithm. Another

important feature of the algorithm is the variability of the error, where the risk of an error

greater than a given threshold is consistently and significantly lower for our algorithm com-

pared to the velocity or coordinate algorithms (Fig 3).
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Note that, the foot-off detection is consistently worse than the foot-contact detection. We

expect that this is due factors commonly recognized by human annotators. The most likely

such factor is that, for many children with severe neurological and orthopaedic impairments,

there is no “clean” foot-off event, but rather the toe is gradually dragged off the floor. This

results in an ambiguous event, corrupting both the human gold-standard and the algorithm

estimation of the event. Further investigation is needed to determine sources of this effect.

5 Discussion

We combined three approaches to detect gait events: velocity-based, coordinate-based, and

our machine learning approach derived from combining kinematic characteristics. We built

a neural network leveraging a large dataset of the kinematics of children with cerebral palsy.

Results indicate that the new model is superior to the heuristic-based models.

The model can reduce engineering costs and can allow more precise data processing. First,

annotation of gait events can save around 30 minutes per trial, amounting to 150 hours of

engineering time yearly in a clinic with only one patient visit per day. Second, thanks to this

reduced cost, more data can be annotated. In many clinics, every trial consists of over 6 steps,

but only 1 − 2 gait cycles are extracted; so over 60% of data is ignored for both clinical report-

ing and research. Third, as an automatic method, our algorithm is free from human errors and

Table 2. Performance of the three algorithms on two measures on predicting foot-contact (FC) and foot-off (FO):

Coverage corresponds to the frequency of detecting the event (larger is better), time is the average error in milliseconds

from the ground truth as defined in Section 2.5 (smaller is better).

coverage time (in ms)

FC FO FC FO

Coordinate-based 90% 84% 18.3 16.7

Velocity-based 93% 90% 20.8 18.3

Proposed method 99% 95% 18.3 12.5

https://doi.org/10.1371/journal.pone.0211466.t002

Fig 3. Comparison of sensitivity (true positive ratio) of three methods as a function of error tolerance (number of

frames from the observed event within which we count the prediction as correct). Our method is off by at most 3

frames in 95% cases, whereas the coordinate-based algorithm only attains this level of accuracy in 83% cases.

https://doi.org/10.1371/journal.pone.0211466.g003
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biases, which further contributes to the improvement of the work flow. Finally, accurate real-

time event detection opens up intriguing possibilities including gait training, real-time feed-

back, tuning of electrical stimulation devices, or designing better assistive, orthotic, and pros-

thetic devices [32].

Results from [31], where three human annotators were asked to annotate events of 50

subjects, suggest that our algorithm surpasses human accuracy. In that study, annotations

compared pair-wise are within two frames 84% of time and three frames 92% of time.

Direct comparison using our algorithm on Bruening’s dataset would be necessary to prove

superiority.

We release the model as part of this publication to stimulate further research and enable its

use in practice. Our Python [33] implementation is based on the TensorFlow library [34]. It

requires Biomechanics Toolkit [35] and runs on Linux (https://github.com/kidzik/event-

detector). It can be used as-is, taking .c3d files as input and outputting annotated .c3d files.

Moreover, relying on the principles of transfer learning [36], the trained network might be fur-

ther tuned for a specific population using a much smaller training set.

While our method is directly applicable in practice for the data presented in this study, the

training relies on a large dataset what can be constraining for wider adoption in specific clini-

cal scenarios. Methods for decreasing both the sample size and the number of required features

can further simplify our approach. First, expert-informed features, such as the ones used in

heuristic-based approach, could greatly reduce the required data. Second, to reduce the

required amount of data, one can apply principles of transfer learning [28] by tuning our

model for a specific populations. This can be achieved by fixing the low-level features (the first

layers of the network) and retraining only the last few layers.
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